Key canopy traits drive forest productivity.

نویسنده

  • Peter B Reich
چکیده

Quantifying the mechanistic links between carbon fluxes and forest canopy attributes will advance understanding of leaf-to-ecosystem scaling and its potential application to assessing terrestrial ecosystem metabolism. Important advances have been made, but prior studies that related carbon fluxes to multiple canopy traits are scarce. Herein, presenting data for 128 cold temperate and boreal forests across a regional gradient of 600 km and 5.4°C (from 2.4°C to 7.8°C) in mean annual temperature, I show that stand-scale productivity is a function of the capacity to harvest light (represented by leaf area index, LAI), and to biochemically fix carbon (represented by canopy nitrogen concentration, %N). In combination, LAI and canopy %N explain greater than 75 per cent of variation in above-ground net primary productivity among forests, expressed per year or per day of growing season. After accounting for growing season length and climate effects, less than 10 per cent of the variance remained unexplained. These results mirror similar relations of leaf-scale and canopy-scale (eddy covariance) maximum photosynthetic rates to LAI and %N. Collectively, these findings indicate that canopy structure and chemistry translate from instantaneous physiology to annual carbon fluxes. Given the increasing capacity to remotely sense canopy LAI, %N and phenology, these results support the idea that physiologically based scaling relations can be useful tools for global modelling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient

Elevation gradients provide opportunities to explore environmental controls on forest structure and functioning. We used airborne imaging spectroscopy and lidar (light detection and ranging) to quantify changes in threedimensional forest structure and canopy functional traits in twenty 25 ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvi...

متن کامل

Using Remotely Sensed Imagery for Forest Resource Assessment and Inventory

Forests are complex ecosystems that develop over centuries through the interactions between organisms and biogeochemical cycles of elements occurring in the soil-atmosphere continuum. The biomass and structure of a forest stand is involved in several ecosystem processes and has been used as an indicator of forest health and productivity. The forest biomass is a key component of the carbon cycle...

متن کامل

Ecophysiological Traits May Explain the Abundance of Climbing Plant Species across the Light Gradient in a Temperate Rainforest

Climbing plants are a key component of rainforests, but mechanistic approaches to their distribution and abundance are scarce. In a southern temperate rainforest, we addressed whether the dominance of climbing plants across light environments is associated with the expression of ecophysiological traits. In mature forest and canopy gaps, we measured leaf size, specific leaf area, photosynthetic ...

متن کامل

First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity.

Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m(2)) across 500 ha of old growth in Costa Rica. Landscape LAI...

متن کامل

Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sough...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 279 1736  شماره 

صفحات  -

تاریخ انتشار 2012